Species
Mollusca
IUCN
NCBI
EOL Text
The phylum Mollusca contains some of the most familiar invertebrates, including snails, slugs, clams, mussels, and octopuses. In contrast to these well-known molluscs, however, others are almost never seen, such as the aplacophorans and monoplacophorans, the latter of which which were only known from Paleozoic fossils until the first live specimen was discovered in the deep sea in 1952 (UCMP 2008).
Except for the aplacophorans, most molluscs have a well-developed, muscular foot. This structure is used in a multitude of ways, for example: locomotion, clinging to surfaces, burrowing, anchoring in sediment, swimming, and grasping (modified into prehensile tentacles in octopuses). The vast diversity of foot adaptations exemplifies the huge morphological diversity of the mollusc form.
A layer of epidermal tissue called the mantle surrounds the body of molluscs. Specialized glands in the mantle are responsible for the extracellular excretions that form shell structures. In all molluscan groups the shell is produced in layers of (usually) calcium carbonate, either in calcite or aragonite form.
Molluscs have adapted to terrestrial, marine and freshwater habitats all over the globe, although most molluscs are marine. Nearly 100,000 mollusc species are known (excluding the large number of extinct species known only as fossils) and it is clear that many thousands of species of extant species remain undescribed. Around 80% of known molluscs are gastropods (snails and slugs).
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Dana Campbell, Campbell, Dana, EOL Rapid Response Team |
Source | http://eolspecies.lifedesks.org/pages/15878 |
Genomic DNA is available from 2 specimens with morphological vouchers housed at Museum of Tropical Queensland and Museum Victoria
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Text can be freely copied and altered, as long as original author and source are properly acknowledged. |
Source | http://www.oglf.org/catalog/details.php?id=T01033 |
Many hard-shelled marine organisms construct their shells or skeletons from calcium carbonate. This mineral occurs naturally in a couple of different crystal structures, aragonite and calcite. Mollusk shells rely chiefly on aragonite, possibly because this was the crystal more easily precipitated from seawater at the time when mollusks first started calcifying their shells (Porter, 2007). Aragonite is also used by scleractinian corals for their skeletons, so it’s not surprising that sand in many productive coastal regions consists largely of aragonite; it’s mostly the broken, ground up shells and skeletons of corals and mollusks past.
Echinoderms, by contrast, use calcite to construct their skeletons (Raup, 1959). The hard parts of a sea urchin are relatively obvious, and both the spines and the test enclosing the body rely on calcite. The softer-looking echinoderms use it too. Starfish, brittle stars and feather stars have more flexible appendages, but these are all supported by many short segments of calcite skeleton. Even sea cucumbers have calcite ossicles embedded in their body wall.
Bryozoans (Taylor, 2012) and Calcareous sponges (Stanley and Hardie, 1998) use both calcite and aragonite, and at least some species show flexibility in which crystal they use, depending on which is favored by ambient water chemistry.
Many species of algae build with calcium carbonate too. Most red calcareous algae build calcite inside their cell membranes, while calcareous green algae usually build aragonite on the outside (Granier, 2012). These algae can be the most important habitat builders in many areas outside of the tropics (Basso, 2012).
Their aragonite tendencies may leave corals, green algae and mollusks especially vulnerable to ocean acidification. At its present concentration of carbon dioxide (CO2), the ocean is still well-supplied with the minerals needed for all organisms that use calcium carbonate to build their shells or skeletons. It has been estimated that by the year 2050, rising CO2 levels will begin to deplete the available ions below optimal levels for aragonite building (Orr et al, 2005), essentially making aragonite more soluble in seawater. This effect has also been measured in the lab on pteropod mollusks. When raised in seawater with the predicted CO2 concentration for the year 2100, the Sea butterfly Limacina helicina's calcification rate fell 28% (Comeau, 2009). Recently, samples of this Antarctic species from a region with depressed aragonite levels were found to have significant shell dissolution already, in the wild (Bednaršek et al, 2012).
Different calcareous organisms are affected in different ways by changes in ocean acidification. The geological record shows a number of events in the past 300 million years when sudden very large changes in species richness occurred in some groups of calcium-carbonate builders, which is likely to be related to acidity changes in seawater (Hönisch et al, 2012). Different groups were affected to a greater or lesser degree and it appears that several factors including habitat and physiology influence which groups are more sensitive to rising acidity. For instance, some calcite-builders like sea urchins and calcareous sponges will be slightly less sensitive, since calcite crystal formation is not affected as quickly by increased CO2. However, organisms that build calcite structures with a significant dose of Magnesium ions (High Magnesium Calcite or HMC) like some red algae do, will be the most quickly affected, as HMC is even more soluble than aragonite (Basso, 2012).
There is a lot of uncertainty about how reduced ocean calcification will feedback on the changing carbon cycle globally. The process of dissolving calcium carbonate (or reducing calcification) actually uses up carbon dioxide, shifting the seawater equilibrium toward bicarbonate ion (see Encyclopedia of Earth, 2010, for review). However, the greater impact of the changes will be in the total productivity of the communities that rely on calcification and the habitat it constructs (The Royal Society, 2005). If a reef habitat is lost, the question is, what will take its place? If the new community is equally productive, it may continue to sequester organic carbon, as dead tissue sinking to the deep ocean, just as fast as the original habitat did. Of course for that scenario it should be borne in mind that natural productivity of coral reef communities is extremely high, so an equally productive one succeeding them would be very unlikely.
- Basso, D., 2012. Carbonate production by calcareous red algae and global change. Geodiversitas 34(1):13-33.
- Bednaršek,N., G. A. Tarling, D. C. E. Bakker, S. Fielding, E. M. Jones, H. J. Venables, P. Ward, A. Kuzirian, B. Lézé, R. A. Feely & E. J. Murphy. 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nature, doi:10.1038/ngeo1635
- Comeau, S. 2009. Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences, 6:1877–1882
- "Coral growth and climate change". In: Encyclopedia of Earth. Eds. Cutler J. Cleveland (Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment). [First published in the Encyclopedia of Earth March 30, 2010; Last revised Date May 7, 2012; Retrieved June 18, 2012
- Granier, B. 2012. The contribution of calcareous green algae to the production of limestones: a review. Geodiversitas 34(1):35-60.
- Hönisch, B., Ridgwell, A., Schmidt, D., Thomas, E., Gibbs, S., Sluijs, A., Zeebe, R., Kump, L., Martindale, R., Greene, S., Kiessling, W., Ries, J., Zachos, J., Royer, D., Barker, S., Marchitto Jr., T., Moyer, R., Pelejero, C., Ziveri, P., Foster, G., and Williams, B. The Geological Record of Ocean Acidification. Science 2 March 2012: 335 (6072), 1058-1063. [DOI:10.1126/science.1208277]
- Orr, J., V. Fabry, O. Aumont, L. Bopp, S. Doney, R. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. Najjar, G. Plattner, K. Rodgers, C. Sabine, J. Sarmiento, R. Schlitzer, R. Slater, I. Totterdell, M. Weirig, Y. Yamanaka & A. Yool. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437|29 September 2005| doi:10.1038/nature04095
- Raup, D. 1959. Crystallography of echinoid calcite. The Journal of Geology, 67(6):661-674
- Stanley, S. and Hardie, L., 1998. Secular oscillations in the carbonate mineralogy of reef-building and
- sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144 (1998) 3–19.
- Taylor, P. 2012. Bryozoan skeletal mineralogy and ocean acidification. Online. Accessed June 18, 2012.
- The Royal Society, 2005. Ocean acidification due to increasing atmospheric carbon dioxide. ISBN 0 85403 617 2
License | http://creativecommons.org/licenses/by/3.0/ |
Rights holder/Author | Jennifer Hammock, Jennifer Hammock |
Source | No source database. |
Non-marine molluscs appear to have a very high extinction rate. Lydeard et al (2004) list terrestrial and fresh water mollusc extinctions as about 40% of total recorded animal extinctions, far greater than marine molluscs.
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Campbell, Dana, Campbell, Dana, EOL Rapid Response Team |
Source | http://eolspecies.lifedesks.org/pages/15878 |
Despite the highly diverse forms of the members of this taxon, molluscs share a recognizable and characteristic generalized general body plan, made up of a head, a foot, and viscera contained in a central body. They are generally considered unsegmented, although primitive forms (aplacophorans and polyplacophorans) with repeated body features show intriguing potential for a possibly segmented mollusc-annelid ancestor (e.g. Jacobs et al 2000).
The mollusc head can house various combinations of sensory structures: tentacles, photoreceptors, statocysts, chemoreceptors. In some molluscs these sensory systems can be very well developed (the complex cephalopod eye is a prime example). Also found on the head is a feature unique to molluscs: the radula. Found in the buccal (mouth) cavity, the radula usually exists as a tongue-like plate covered with “teeth” used by herbivores, carnivores and scavengers to scrape food particles into the mouth. Depending on diet and use, tooth number, shape, arrangement, makeup, and growth have adapted diversely. Especially in the gastropods, number and shape of radular teeth are important taxonomic characters. The radula has also been adapted for diverse feeding methods. Some gastropods and cephalopods have a drill-like radula used to bore holes in the shell of prey, sometimes with the aid of acids secreted from an adjacent boring gland. In cone snails the radula is set on the end of a retractable proboscis and is slung out like a harpoon, to inject toxins into the prey, delivered through piercing, hollow teeth. In some cases these toxins are powerful neurotoxins, deathly to humans. Several lineages of molluscs have evolved suspension feeding, especially in the gastropods and bivalves. The radula in these cases is either highly reduced or lost altogether, and in most cases food particles are caught by ctinidia (gills) and moved to the mouth by cilia.
Except for the aplacophorans, most molluscs have a well-developed, muscular foot. This structure is used in a multitude of ways, for example: locomotion, clinging to surfaces, burrowing, anchoring in sediment, swimming, modified into prehensile tentacles (octopus); the vast diversity of foot adaptations exemplifies the huge morphological diversity of the mollusc form.
A layer of epidermal tissue called the mantle surrounds the body of molluscs. Specialized glands in the mantle are responsible for the extracellular excretions that form shell structures. The ancestral mollusc is thought to have one shell capped over the body like a limpet, and from that a diverse number of shell arrangements have evolved. Molluscs may have have one, two, or eight (in chitons) shells. Aplacophorans have no shell, but have instead minute aragonite spicules imbedded within the mantle. Secondary loss or much reduced shell vestiges have also occurred independently in multiple mollusc lineages (for example nudibranchs, slugs, cephalopods). Shells usually provide external protection, but there have been several independent internalizations within cephalopods and opisthobranchia. In all molluscan groups the shell is produced in layers of (usually) calcium carbonate, either in calcite or aragonite form. The wide range of pigmentation, shape, size, sculpturing, and twisting of sea shells is, of course, well known. There is much recent developmental work describing gene expression in shell formation, and the roles of highly conserved regulatory genes such as engrailed and Hox genes have been examined (e.g. Jacobs et al 2000, Samadi and Steiner 2009).
Between the mantle and the body proper is the mantle cavity, which may be organized as one or two separate spaces or grooves. Many important functions occur in the mantle cavity: the ctenidia (gills) are positioned here and the body systems, namely the nephridia (kidney like organs), the gut and the reproductive organs open up into this space. In aquatic molluscs cilia on the surface of the mantle and organs maintain water flow through the mantle cavity to take away wastes and bring in oxygenated water (and food particles for those suspension feeding molluscs). Molluscs have an open circulatory system with a full heart (with the exception of the cephalopods, which have a closed circulatory system). Their nervous system is well developed, usually consisting of a dorsal ganglion, a ring of nerves around the esophagus, and two pairs of lateral nerve cords running the length of the body, which are connected transversely in a ladder-like arrangement. There is an enormous range of nervous system development in the molluscs, from the poorly developed ganglia of the aplacophorans to the extreme cephalization of the cephalopods. Important work in the fields of neurobiology has been carried out on the squid Doryteuthis pealeii (formerly Loligo pealeii) and on Aplysia sea slugs.
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Campbell, Dana, Campbell, Dana, EOL Rapid Response Team |
Source | http://eolspecies.lifedesks.org/pages/15878 |
Many different molluscs have been integrated into human culture since prehistoric times in a plethora of forms: shell money, jewelry and food, crop pests, and disease carriers (Schistosomiasis is a watersnail-born parasite that effects hundreds of millions of people in the world).
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Campbell, Dana, Campbell, Dana, EOL Rapid Response Team |
Source | http://eolspecies.lifedesks.org/pages/15878 |
Molluscs range in size from almost microscopic to animals 20 meters long (giant squid) or weighing 450 pounds (giant clams).
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Campbell, Dana, Campbell, Dana, EOL Rapid Response Team |
Source | http://eolspecies.lifedesks.org/pages/15878 |
Molluscs have adapted to terrestrial, marine and freshwater habitats all over the globe, although most molluscs are marine.
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Campbell, Dana, Campbell, Dana, EOL Rapid Response Team |
Source | http://eolspecies.lifedesks.org/pages/15878 |
Animal / predator
adult of Muricidae is predator of Mollusca
Animal / parasite
larva of Sarcophaga melanura parasitises Mollusca
Other: minor host/prey
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | BioImages, BioImages - the Virtual Fieldguide (UK) |
Source | http://www.bioimages.org.uk/html/Mollusca.htm |