You are here
Species
Penaeus monodon Fabricus, J.C. 1798
IUCN
NCBI
EOL Text
This species is known by a variety of common names. The most common name is giant tiger prawn (shrimp). However, they are also called Asian prawn shrimp, ghost prawn, and grass shrimp.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Penaeus_monodon/ |
In their first larval stage, giant tiger prawns feed on their yolk reserves. Later larval stages filter feed on plankton, diatoms, and other small organisms in the water column before becoming benthic feeders with a diet composed of organisms such as polycheate worms (Sabellaridae, Spionidae, Unicidae), as well as detritus. In the wild, adult giant tiger prawns feed on mollusks (including squid, blood clams (Arca sp.) and oysters), small crustaceans (including isopods, crabs and their eggs, and young penaeid prawns, including their own species). In aquaculture, these prawns feed on artificial diets consisting mainly of fishmeal; it has been noted that individuals grow more quickly when fed this diet.
Animal Foods: fish; eggs; carrion ; mollusks; aquatic or marine worms; aquatic crustaceans; other marine invertebrates
Plant Foods: phytoplankton
Other Foods: detritus
Foraging Behavior: filter-feeding
Primary Diet: carnivore (Eats non-insect arthropods, Molluscivore , Vermivore, Scavenger ); omnivore ; planktivore ; detritivore
- Abu Hena, M., O. Hishamuddin. 2012. Food selection preference of different ages and sizes of black tiger shrimp, Penaeus monodon Fabricius, in tropical aquaculture ponds in Malaysia. African Journal of Biotechnology, 11/22: 6153-6159. Accessed January 30, 2013 at http://www.academicjournals.org/ajb/PDF/pdf2012/15Mar/Abu%20Hena%20and%20Hishamuddin.pdf.
- Thomas, M. 1972. FOOD AND FEEDING HABITS OF PENAEUS MONODON FABRICIUS FROM KORAPUZHA ESTUARY. Indian Journal of Fisheries, Volume 19. Issue 1&2: 202-204.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Penaeus_monodon/ |
Giant tiger prawns are detritivores and consumers of small invertebrates. They also are prey for many species of fishes and invertebrates.
Giant tiger prawns are a host for a variety of viruses, all of which are extremely contagious within populations and cause high mortality rates. The Yellowhead virus, originally isolated from this species, causes the hepatopancreas and cephalothorax to become discoloured and swollen. WSSV (White Spot Syndrome Virus) causes white spot disease, symptoms of which include lesions and white deposits on the skin and connective tissue. There are two types of Baculovirus infections commonly seen in these prawns: Baculoviral Midgut Gland Necrosis, which affects mainly larvae, and Monodon baculovirus disease, which is typically followed by secondary bacterial infections. These diseases are of particular concern in aquaculture environments and in areas where this species has been introduced.
Giant tiger prawns are also host to a number of protozoan ectoparasites and endoparasites. Their ectoparasites attach themselves to the gills and limbs, potentially interfering with breathing and motility, while their endoparasites live in the gut and can affect nutrient absorption. This species is also known to host of a number of fungal microsporidians.
Commensal/Parasitic Species:
- Baculovirus
- White spot syndrome virus (Whispoviridae)
- Yellowhead virus
- Acineta sp. (Order Endogenida, Class Phyllopharyngea)
- Epistylis sp. (Order Sessilida, Phylum Ciliophora)
- Voritcella sp. (Order Sessilida, Phylum Ciliophora)
- Zoothamnium sp. (Order Peritrichida, Phylum Ciliophora)
- Cephalolobus sp. (Order Eugregarinida, Class Sporozoea)
- Nematopsis sp. (Order Eugregarinida, Class Sporozoea)
- Nematopsis sundarbanensis (Order Eugregarinida, Class Sporozoea)
- Agmasoma penaei (Class Microsporea, Phylum Microspora)
- Enterocytozoon hepatopenaei (Class Microsporea, Phylum Microspora)
- Nosema sp. (Class Microsporea, Phylum Microspora)
- Chakraborti, J., P. Bandyapadhyay. 2011. Seasonal incidence of protozoan parasites of the black tiger shrimp (Penaeus monodon) of Sundarbans, West Bengal, India. Journal of Parasitic Diseases, 35/1: 61-65. Accessed January 30, 2013 at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114977/.
- Crockford, M. 2008. "White Spot Disease" (On-line pdf). Australia and New Zealand Standard Diagnostic Procedures. Accessed January 30, 2013 at http://www.scahls.org.au/__data/assets/pdf_file/0009/1516518/White_Spot_Syndrome_Virus.pdf.
- Dash, G., P. Yonzone, A. Roy. 2010. PREVALENCE AND SEASONAL ABUNDANCE OF PROTOZOAN PARASITES IN PENAEID SHRIMP PENAEUS MONODON IN HIGH SALINE BHERIES OF WEST BENGAL. Journal of Experimental Zoology of India, 13/2: 427-430. Accessed January 30, 2013 at http://www.connectjournals.com/file_html_pdf/787602H_j18_427a.pdf.
- FAO, 2001. "Crustacean Disease" (On-line). Accessed February 22, 2012 at http://www.fao.org/docrep/005/y1679e/y1679e00.htm.
- Johnson, S. 1995. Handbook of Shrimp Diseases. Bryan, TX: Texas A&M University Sea Grant College Program. Accessed January 30, 2013 at http://nsgl.gso.uri.edu/tamu/tamuh95001.pdf.
- Nadala, Jr., E., L. Tapay, P. Loh. 1997. Yellow-head virus: a rhabdovirus-like pathogen of penaeid shrimp. Diseases of Aquatic Organisms, 31: 141-146. Accessed January 30, 2013 at http://www.int-res.com/articles/dao/31/d031p141.pdf.
- Toubiana, M., O. Guelorget, J. Bouchereau, H. Lucien-Brun, A. Marques. 2004. Microsporidians in penaeid shrimp along the west coast of Madagascar. Diseases of Aquatic Organisms, 58: 79–82. Accessed January 30, 2013 at http://www.int-res.com/articles/dao2004/58/d058p079.pdf.
- Tourtip, S., S. Wongtripop, G. Stentiford, K. Bateman, S. Sriurairatana, J. Chavadej, K. Sritunyalucksana, B. Withyachumnarnkul. 2009. Enterocytozoon hepatopenaei sp. nov. (Microsporida: Enterocytozoonidae), a parasite of the black tiger shrimp Penaeus monodon (Decapoda: Penaeidae): Fine structure and phylogenetic relationships. Journal of Invertebrate Pathology, 102: 21-29. Accessed January 30, 2013 at http://www.crustaceancrl.eu/publications/2009_%20JIP%20Enterocytozoon%20hepatopanaei.pdf.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Penaeus_monodon/ |
Throughout their lifetimes, giant tiger prawns face a variety of predators, including birds, comb jellies, crustaceans, and fishes. When adult prawns move from shallow inshore areas to deeper water, their rate of mortality drops.
Giant tiger prawns have developed a variety of defenses to protect themselves from predation. Prawns have spines on either end of their body (a rostrum above the mouth, and a telson located at the dorsal end of the body). Their distinctive stripes and body color, which is similar to their muddy environment, help to camouflage them from predators. These prawns also bury themselves in substrate, not only hiding their bodies but also masking their waste, which would otherwise likely be detected by potential fish predators' chemosensory systems.
Known Predators:
- Black cormorant (Phalacrocorax sulcirostris)
- Green heron (Butoroides striatus)
- Grey heron (Ardea cinerea)
- Purple heron (Ardea purpurea)
- Cuttlefish (Sepia officinalis)
- Squid (Order Teuthida, Class Cephalopoda)
- Barramundi (Lates calcarifer)
- Red Snapper (Lurjanus argenrimaculatus)
- Sea basses (Serranidae sp.)
- Cartilaginous fishes (Class Chondrichthyes)
- Mantis Shrimp Oratosquilla oratoria
- Blue swimmer crab (Portunus pelagicus)
- Mud crab (Scylla serrata)
Anti-predator Adaptations: cryptic
- Primavera, H. 1997. Fish predation on mangrove-associated penaeids The role of structures and substrate. Journal of Experimental Marine Biology and Ecology, 215: 205-216. Accessed January 30, 2013 at http://mangroveweb.seafdec.org.ph/pubs/Fish%20predation.pdf.
- Rajagopal, S., M. Srinivasan, S. Khan. 1995. Problems in Culturing the Black Tiger Shrimp (Penaeus monodon) the Semi-intensive way: An Indian Experience. Naga, 3: 29-30. Accessed January 30, 2013 at http://www.worldfishcenter.org/Naga/na_2235.pdf.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Penaeus_monodon/ |
Giant tiger prawns have eyestalks on their heads which enable them to detect predators and search out prey. The eyes are called ommatidia, and are composed of clusters of photoreceptors. Since giant tiger prawns are nocturnal, they must have very good vision at night to detect predators and prey, but can also see well in daylight. Eyestalks have the ability to change their optical properties based on light-dark adaptations. In dark light, eyestalks receive light from a wide angle and create a superposition image, formed by mirrors in the sides of the cornea instead of by lenses. This superposition image is very effective at detecting movement. In bright light, eyestalks have the ability to see almost 360 degrees and form apposition images, a more efficient detector of light than superposition images. Molting Inhibition Hormone (MIH), which controls the molting cycle, is produced in the eyestalks; a recent study showed that when eyestalks are ablated, molting is accelerated. It is also known that ablating eyestalks in this species induces ovulation and jeopardizes growth. Giant tiger prawns also have flagellae on their antennae, which detect predators and prey through vibrations. These flagellae also have chemosensors, which detect amino acids and differences in pH, salinity and food stimulants.
Communication Channels: visual ; tactile ; chemical
Other Communication Modes: vibrations
Perception Channels: visual ; tactile ; vibrations ; chemical
- Uawisetwathana, U., R. Leelatanawit, A. Klanchui, J. Prommoon, S. Klinbunga, N. Karoonuthaisiri. 2011. Insights into Eyestalk Ablation Mechanism to Induce Ovarian Maturation in the Black Tiger Shrimp. PLoS ONE, 6/9: doi:10.1371/journal.pone.0024427. Accessed January 29, 2012 at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0024427.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Penaeus_monodon/ |
Eggs begin development by slowly sinking to the bottom of outer littoral areas. Giant tiger prawns develop through a complex life cycle beginning with three larval stages. Naupilii hatch twelve to fifteen hours after spawning is completed and look like tiny spiders. Larvae at this stage do not feed, instead surviving on their yolks as they are carried by tidal currents from open ocean towards shore. Naupilii larvae pass through six quick molts, increasing their body size. Individuals in the next larval stage, called protozoea, are identified by increased body size and length, the appearance of feathery appendages and, though still planktonic, beginning to feed. After molting three more times, protozoea proceed into the mysis larval stage. At this stage, they begin to have characteristics of adult prawns including segmented bodies, eye stalks, and tails. Mysis larvae molt three more times, becoming postlarvae. At this point in the life cycle, they change from planktonic to benthic feeding. This entire process takes two to three weeks. Prawns continue to molt through a juvenile phase, lasting 1-6 months. Juveniles and adults are distinguished mainly by location and carapace length. Carapace lengths of juveniles range from 2.2-11 mm and they are found mainly in estuarine areas located at the mouth or middle of bays and mangroves while adults are found in outer littoral areas of full salinity, and have carapace lengths ranging from 37-81 mm.
Development - Life Cycle: metamorphosis
- Motoh, H. 1981. Studies on the fisheries biology of the giant tigen prawn, Penaeus monodon in the Philippines. Tigbauan, Philippines: Aquaculture Dept., Southeast Asian Fisheries Development Center.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Penaeus_monodon/ |
The lifespan for wild and captive giant tiger prawns is about 2 years, though it has been suggested that individuals introduced into the Gulf of Mexico have a lifespan closer to 3 years.
Typical lifespan
Status: wild: 2 to 3 years.
Average lifespan
Status: captivity: 2 years.
- Institute for the Study of Invasive Species, 2011. "Penaeus monodon" (On-line). Accessed February 24, 2012 at http://www.tsusinvasives.org/database/black-tiger-shrimp.html.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Penaeus_monodon/ |
Giant tiger prawns are known to mate prior to ovarian maturation; females store sperm in sacs within their closed thelycum until eggs are fully mature. Although little is known regarding specific mating behaviors, it has been noted that this species mates nocturnally, in off-shore waters, shortly after females have molted and their carapaces are still soft (males typically still have hard carapaces during breeding). Copulation begins with a male swimming parallel to a female. The male bends his body and first pair of pleopods with the petasma (caught by the appendix masculina) stretched vertically down, in order to facilitate the forward swinging of the second pair of pleopods. The first pair of pleopods pulls apart the petasmal halves, preventing the loss of sperm during copulation. The pair then takes an abdomen-to-abdomen position. The female exerts pressure on the male's petasma using her 4th pair of pereiopods and a spermatophore (sac of sperm) is thrust into her thyelycum, after which the pair separate. A majority of adult individuals copulate more than once; females are known to spawn 4 times during their lives, at carapace lengths of 50, 62, 66, and 72 mm.
Mating System: polygynandrous (promiscuous)
It is difficult to estimate age at sexual maturity, but males become mature upon reaching an average carapace size of 37 mm, females at 47 mm. Females can produce 248,000-810,000 eggs at a time and are known to spawn up to four times during their lifespan. Once eggs are mature, they are expelled in a greenish-white cloud, along with stored spermatophores, into the ocean where external fertilization occurs. Eggs range in size from 0.27-0.31 mm.
Breeding interval: Females spawn 4 times during their lifespan at carapace lengths of 50, 62, 66, and 72 mm. It is unknown how many times males mate.
Breeding season: This species breeds year round.
Range number of offspring: 248,000 to 810,000.
Range gestation period: 12 to 15 hours.
Key Reproductive Features: iteroparous ; year-round breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization (External ); broadcast (group) spawning; oviparous ; sperm-storing ; delayed fertilization
Males exhibit no parental involvement after mating. Females invest by yolking and protecting eggs while they are still in their bodies. They exhibit no further parental involvement once eggs and sperm have been released.
Parental Investment: female parental care ; pre-fertilization (Provisioning, Protecting: Female)
- Dall, W., B. Hill, P. Rothlisberg, D. Sharples. 1991. Advances in Marine Biology. Queensland, Australia: Academic Press. Accessed March 15, 2012 at http://www.sciencedirect.com.proxy.lib.umich.edu/science/bookseries/00652881/27.
- FAO Fisheries and Aquaculture Department, 2012. "Fisheries and Aquaculture Department. About us - Fisheries and Aquaculture Department" (On-line). Accessed February 01, 2012 at http://www.fao.org/fishery/culturedspecies/Penaeus_monodon/en.
- Motoh, H. 1981. Studies on the fisheries biology of the giant tigen prawn, Penaeus monodon in the Philippines. Tigbauan, Philippines: Aquaculture Dept., Southeast Asian Fisheries Development Center.
- New South Wales Government, 2009. "Prawns - aquaculture prospects" (On-line). Accessed February 10, 2012 at http://www.dpi.nsw.gov.au/fisheries/aquaculture/publications/species-saltwater/prawns.
- State of New South Wales through Department of Industry and Investment, 2010. "Biology and Life cycle of prawns" (On-line). Accessed February 10, 2012 at http://www.dpi.nsw.gov.au/fisheries/aquaculture/publications/species-saltwater/prawns.
- Yano, I., R. Kanna, R. Oyama, J. Wyban. 1988. Mating behavior in the penaeid shrimp Pennaeus vannamei. Marine Biology, 97: 171-175. Accessed March 21, 2012 at http://wenku.baidu.com/view/6a6c9c6eaf1ffc4ffe47ac5f.html.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Penaeus_monodon/ |
The following is a representative barcode sequence, the centroid of all available sequences for this species.
There are 2 barcode sequences available from BOLD and GenBank.
Below is a sequence of the barcode region Cytochrome oxidase subunit 1 (COI or COX1) from a member of the species.
See the BOLD taxonomy browser for more complete information about this specimen and other sequences.
-- end --
Barcode of Life Data Systems (BOLDS) Stats
Public Records: 113
Specimens with Barcodes: 125
Species With Barcodes: 1