You are here
Species
Lymantria dispar (Linnaeus, 1758)
IUCN
NCBI
EOL Text
POPULATION AND POPULATION CYCLES: Established gypsy moth populations remain low for varying periods of time, sometimes permanently. During this phase, predators including especially native mice (Peromyscus spp.) among other vertebrates and invertebrates, as well as native and introduced parasitoids (Diptera, Hymenoptera) exert some degree of control (e.g. Doane and McManus, 1981, Nichols, 1980, FEIS, 1995, Weseloh, 1985, Weseloh et al., 1983) and numerous other publications). Introduced predatory beetles (Calosoma) tend to have more impact at higher densities. Despite predators and parasitoids, populations in vulnerable forest types can increase to a point where natural enemies no longer exert effective control. Populations then build up within about three years to outbreak levels. In peak years of severe outbreaks in oak dominated forests 100% defoliation of all favored to moderately resistant trees often occurs. White oaks and other highly favored species may incur substantial defoliation the year before the general outbreak. Severe defoliation generally occurs for one or two seasons followed by a crash. Occasionally populations will fail to collapse for longer periods, and moderate to severe defoliation may continue to occur locally after generalized outbreaks in neighboring areas have collapsed. Such persistence is (or at least was) most likely in areas recently invaded by the gypsy moth, but since about the late 1990s has been much less frequent than previously due to the fungus Entomophaga maimaiga (Richard Reardon, USFS, pers. comm.). Collapse is most likely after a season with near 100% defoliation of oaks.
An unusual and overlooked situation can persist for years in coastal plain southern New Jersey (especially in Cumberland County 1980s to about 1996 when Entomophaga ended the situation) and may recur farther south locally if that fungus is slow to establish. Key ingredients appear to be low density (5-20%) of canopy oaks and a lot of sweetgum. Early instars concentrate on the scattered oaks, which are defoliated in late May. Older larvae then disperse to sweetgums--which were unacceptable to early instars. The sweetgums may or may not incur moderate to heavy defoliation depending on their density and proximity to oaks. Larvae forced off oaks find abundant food, disperse sufficiently that they are no longer at high density, and tend to produce normal egg masses. Red maple and blueberry are also readily available alternate foodplants but sweetgum seems preferred. The percent stand defoliation remains low but individual oaks are defoliated repeatedly. Because of the greater number (often six or more) of heavy (60-100%) defoliations per decade these oaks on mesic to hydric soils had higher mortality in the 1980s and 1990s than oaks in some xeric sites with more normal crashes. A few sweetgums and hickories were also killed. The Nature Conservancy's Eldora Preserve is an example of this damage pattern and most mature oaks were killed in the 1980s. New Jersey's only significant stand of Quercus nigra south of Dividing Creek lost almost all mature trees of that species, but hundreds (possibly >1000) of saplings and pole-sized water oaks persist as of November 2002.
Heavy defoliation may occur in somewhat interrupted areas of several hundred thousand acres during the worst seasons and thousand acre outbreaks are not unusual. In June 1981 most oak and mixed forests from southern Maine to coastal Connecticut were heavily defoliated. Occasionally in sprayed areas (mainly older reports, e.g. Nichols, 1980) populations can rebound to outbreak levels in three years, but generally they remain low for five or more years once they crash. Prior to the emergence of Entomophaga in 1989 the general rule was an outbreak every six to 12 years in New England etc. In the southern New Jersey Pinelands region many oak-pine forests (especially in Burlington, Cape May and Cumberland Counties) were defoliated several times when the gypsy moth first invaded in the late 1970s-1980s, often with substantial mortality to subcanopy or even canopy oaks. Other similar oak-pine forests in Salem, Ocean, and Atlantic Counties have (as of 2002) never had an outbreak, in many cases without any control efforts. The 1995 FEIS and other sources report similar observations elsewhere. Failure of expected outbreaks to materialize was a problem in the Sample et al. (1996) field studies. Outbreaks often start in highly favored stressed sites such as ridgetops. Some old reports suggested they sometimes started at the edge of developed areas, perhaps due to increased shelter for pupae and reduced predator (Peromyscus) densities (e.g. due to housecats and habitat changes).
Outbreaks are not fully synchronized, so that there are almost always some areas of heavy defoliation in any given season at least along the leading edge of spread. There are years with none over vast areas behind the leading edge. Likewise, even in the worst years (1981 to date) there are always areas with no noticeable defoliation. In New England, eastern New York and northeastern Pennsylvania, outbreaks usually collapse after one to three seasons. Following collapse, it may be difficult to find any stage of the gypsy moth for a few years. This fact has hampered studies of low-level gypsy moth populations so there are some gaps in knowledge of their population dynamics. Since 1989 (see below) frequency of outbreaks in the Northeast has declined markedly and much of southern New England has been outbreak free (as of 2002) since 1981 or 1982.
NATURAL CONTROLS. Outbreak collapse usually involves death of an overwhelming majority of gypsy moth larvae due to some combination of gypsy moth neuclear polyhedrosis virus (NPV), or since 1989 the fungus Entomophaga maimaiga, or starvation. Both pathogens are introduced, although there is some uncertainty of the exact origin of the current fungus, and are generally the most important natural controls in outbreak conditions. The fungus can also provide excellent control in pre-outbreak conditions and has prevented outbreaks since 1989 in large areas of New England. It is now also an important mortality agent in low density populations. Mortality from parasitism can become very high or may remain low in outbreaking populations. It seems to be the consensus that the important cumulative impact of parasitoids and predators is to slow the rate of increase in low-level populations and thus to lengthen the period between outbreaks, more than actually ending or preventing outbreaks.
Several mostly non-native parasitoids utilize gypsy moth larvae and pupae. Some useful references for identification and basic information include Hoy (####), Nichols (1980) and Simons et al. (1979). Nichols regarded nine species as of some importance in Pennsylvania. None of the parasitic wasps sting humans. Weseloh (1985) and Weseloh et al. (1983) and some of the references therein are among the important studies of parasitoid impacts including in low level larval populations. At least two parasitoids are often noticeable in many states. A tiny introduced wasp, Ooencyrtus kuvanae, attacks the egg masses and has five or six generations per year, from about July to December. Due to its small size, it can only destroy eggs near the surface of the masses. Nichols reports 20 to 50% parasitism of eggs. They kill the highest percentage of eggs in the small egg masses laid in outbreak years. These wasps commonly find virtually 100% of egg masses in an area. Another small wasp Cotesia (formerly Apanteles) melanoscelus kills gypsy moth larvae in about the third instar. The larva dies near or attached to the small white cocoon made by the wasp larva. This tiny wasp is apparently a specialist on Lymantriidae (gypsy moth, satin moth, native Orgyia) (Wieber et al., 2003). Most gypsy moth larvae observed by the author in parts of Hamden, Connecticut in 1982 (the year after a massive outbreak) and about half at Eldora, Cape May County, New Jersey in the early and mid 1990s (a suboutbreak period) were killed by this parasitoid. In general though its impact is limited by a complex of hyperparasitoids ((Wieber, et al., 2003). Parasites of eggs and early instars are generally not considered to have a major impact on gypsy moth populations, especially at high densities, but probably do help slow increase of low density populations.
Compsilura concinnata is an introduced tachinid fly whose larvae parasitize gypsy moth caterpillars and hundreds of other species including a few sawflies. Sometimes it reaches high levels in outbreaking gypsy moth populations, but it usually does not greatly impact them, probably because it is a multiple brooded generalist that quickly becomes limited by lack of alternate hosts which it may deplete (see Boettner et al. 2000). Its long-term impact on native summer feeding Lepidoptera has apparently been drastic reductions and state level extirpations of once widespread (Farquhar, 1934) summer species in New England. It does not appear to have greatly impacted any native spring feeders. As far as known, other gypsy moth biocontrols are not seriously impacting native species.
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | NatureServe |
Source | http://explorer.natureserve.org/servlet/NatureServe?searchName=Lymantria+dispar |
The Gypsy Moth (Lymantria dispar) are moths in the family Erebidae. Lymantria dispar covers many subspecies, subspecies identification such as L. d. dispar or L. d. japonica leaves no ambiguity in identification. Lymantria dispar subspecies have a range which covers in Europe, Africa, Asia, North America and South America.
Subspecies[edit]
Common name | Subspecies | Distribution | Identifying characteristics |
---|---|---|---|
North American Gypsy Moth | Lymantria dispar dispar | Eastern North America[1]:6 | Females winged but flightless[1]:6 |
European Gypsy Moth | Lymantria dispar dispar | Europe, western Asia and north Africa[1]:6 | Females winged but flightless[1]:6 |
Asian Gypsy Moth | Lymantria dispar asiatica | Eastern Asia,[1]:6 western North America[2] | Flying females; attracted to lights[1]:6 |
Japanese Gypsy Moth | Lymantria dispar japonica | All of Japan[1]:6 | Large males, very dark brown color[1]:6 |
The European Gypsy Moth (Lymantria dispar dispar) is native to temperate forests in western Europe. It had been introduced to Canada in 1912 and in the USA in 1869.
The Asian Gypsy Moth (Lymantria dispar asiatica) is native to southern Europe, northern Africa, Asia and Pacific. It is spreading to northern Europe (Germany, and other countries), where it hybridized with the European Gypsy Moth. A colony had been reported from Great Britain in 1995.
This moth is an important defoliator on broad-leaf and conifer trees.[3]
Etymology[edit]
The order Lepidoptera contains moths and butterflies characterized by having a complete metamorphosis; larvae transform to pupae and then metamorphosing into adult moths or butterflies.[4]:9 The family is Lymantriidae.[4]:9 Lymantriid larvae are commonly called tussock moths because of the tufts of hair on larvae.[4]:9
The meaning of the name Lymantria dispar is composed of two Latin-derived words. Lymantria means 'destroyer'.[5] The word dispar is derived from the Latin word that means 'to separate' and it depicts the differing characteristics between the sexes.[4]:9
The North American gypsy moth and the European gypsy moth are of the same species, often listed as Lymantria dispar dispar.[1]:6 Confusion over the species and subspecies, for classification still exists. The U. S. Department of Agriculture defines the Asian gypsy moth as "any biotype of Lymantria dispar possessing female flight capability",[1]:5 despite Lymantria dispar asiatica not being the only classified subspecies that is capable of flight.[1]:6 Traditionally, Lymantria dispar has been referred to as "gypsy moths" even when referring to Japanese, Indian and Asiatic gypsy moths.[1]:5
References[edit]
- ^ a b c d e f g h i j k l Pogue, Michael. "A review of selected species of Lymantria Huber [1819]". Forest Health Technology Enterprise Team. Retrieved September 14, 2012.
- ^ "Asian Gypsy Moth Lymantria dispar asiatica". Pest Tracker National Agricultural Pest Information System. Retrieved September 14, 2012.
- ^ FAO - Profiles of selected forest pests
- ^ a b c d The Gypsy Moth: Research Toward Integrated Pest Management, United States Department of Agriculture, 1981
- ^ Free Dictionary for Lymantria
License | http://creativecommons.org/licenses/by-sa/3.0/ |
Rights holder/Author | Wikipedia |
Source | http://en.wikipedia.org/w/index.php?title=Lymantria_dispar&oldid=651917087 |
Gypsy moths, like most other insects, perceive their environment by sight and tactile organs like legs and wings. In addition, gypsy moth larvae are able to perceive ultraviolet light from the sun. After they hatch from their eggs, they are attracted to this light and can move up their host trees. Eventually, they end up in the canopies, where they can be dispersed by wind.
One way in which gypsy moths communicate with each other is by the use of chemical sex pheromones, which are released by the female abdominal glands in order to attract males. The pheromone released by female moths is known as disparlure (cis-7,8-epoxy-w-methyloctadecane). Sufficient research about its structure and function has been performed in order to allow it to now be synthesized in laboratories.
Communication Channels: chemical
Other Communication Modes: pheromones
Perception Channels: visual ; ultraviolet; tactile ; chemical
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Lymantria_dispar/ |
How much trouble can an unassuming black beetle no bigger than your fingernail be? Plenty, as we learn in this episode of One Species at a Time. Tiny stowaways like the Asian longhorned beetle (Anoplophora glabripennis), European Gazelle beetle (Nebria brevicollis) and Gypsy Moths (Lymantria dispar) are arriving on container ships and wreaking havoc with native ecosystems. Listen to the podcast to learn more.
View the podcast audio slide show on the Learning + Education section of EOL.
License | http://creativecommons.org/licenses/by/3.0/ |
Rights holder/Author | Tracy Barbaro, Tracy Barbaro |
Source | No source database. |
Lymantria dispar, the gypsy moth, is an invasive species in the United States, introduced from Europe in 1868 by Etienne Leopold Trouvelot, a French artist and astronomer. Trouvelot was interested in producing a hardy silk producing moth, and imported L. dispar eggs which escaped into his back yard in Medford, Massachusetts. Shortly after this, in 1889, the first gypsy moth outbreak in the United States occurred in the Boston area. Gypsy moths have since spread throughout the Northeast, Canada, and the Midwest, despite huge efforts to eradicate this pest. An outbreak of gypsy moth caterpillars can very quickly and effectively defoliate forests. Spread of this species represents a significant risk especially to hardwood trees, their preferred hosts, but since the gypsy moth has a wide diet, most types of trees are affected. Since 1980, the gypsy moth has defoliated about a million forested acres each year. Infestations occur cyclically, with populations reaching outbreak levels every 5-10 years.
The USDA has a coordinated Federal-state program to control populations and limit at least the human propagated spread of the Gypsy moth from currently quarantined states into new areas. The Gypsy Moth quarantine currently includes the District of Columbia and the entire states of Connecticut, Delaware, Maryland, Massachusetts, Michigan, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont. As well as spreading in concert with humans, populations can naturally spread by female moths flying to uninfested areas, or at the larval (caterpillar) stage, which are carried on the wind by their silk threads.
The government has developed another interesting control program which sprays effected areas with an engineered baculovirus, which is very effective in killing the caterpillars. The baculovirus works by changing the nocturnally-feeding caterpillars behavior, so that they remain high in the forest canopy instead of their usual return to daytime hiding places on the ground. When the virus then kills the caterpillar, the caterpillar's flesh dissolves and the virus rains down from the top of the tree and is widely spread to other caterpillars below.
The asian subspecies of Lymantria dispar, although similar to the European subspecies described above, has never become established in North America. Because it is a stronger flier than the European subspecies, and presumably could quickly spread throughout the US, it is considered a major threat and carefully monitored at likely entry pathways.
(Aphis-USDA 2003; Aphis-USDA 2011; Hamilton, 2011; Hoover et al. 2011; Liebhold 2003; McManus et al 1989)
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | Dana Campbell, Dana Campbell |
Source | No source database. |
There are four stages in the metamorphic life cycle of gypsy moths: egg, larva, pupa, and adult. Eggs are laid in July or August, on the trunks or branches of trees. After 4 to 6 weeks, the embryos develop into larvae. These larvae undergo diapause as eggs throughout the winter, and hatch in the spring of the following year, according to the budding cycles of the hardwood trees on which they are laid. As they grow older, larvae pass through a series of molting events, each one resulting in an increase in size. The stages in between molts are called instars. Gypsy moths typically undergo five or six instar stages before they become pupae, which happens in June or July. The pupa stage typically lasts 7 to 14 days. After pupation, males emerge first, usually 1 to 2 days before females. Mating occurs after adult females emerge, and then eggs are laid. Both parents die after the eggs are laid, and the cycle repeats.
Development - Life Cycle: metamorphosis ; diapause
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Lymantria_dispar/ |
Comments: This is the familiar gypsy moth and it has a massive synonymy. Some authors recognize subspecies in which case the American one is still basically the typical European L. dispar dispar but other strains will probably get mixed in and the Asian one perhaps already has. Other generic names have been used in older literature, such as Porthetria
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | NatureServe |
Source | http://explorer.natureserve.org/servlet/NatureServe?searchName=Lymantria+dispar |
Gypsy moths are native to southern Europe, northern Africa, central and southern Asia, and Japan. They have spread quickly since their introduction to the United States and Canada in 1869, and are especially prevalent in the northeastern United States.
Biogeographic Regions: nearctic (Introduced ); palearctic (Native ); oriental (Native )
Other Geographic Terms: holarctic
- National Biological Information Infrastructure (NBII) and IUCN/SSC Invasive Species Specialist Group (ISSG). Lymantria dispar (insect). 49. Baltimore: Global Invasive Species Database. 2011.
- Munson, A., J. Hanson. 1981. Pest Alert: Gypsy Moth. St. Paul, MN: United States Department of Agriculture Forest Service.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Lymantria_dispar/ |
Gypsy moths are seasonal breeders, laying eggs approximately once per year. Therefore, life expectancy is 12 months. The egg stage lasts for approximately 8 to 9 months. Gypsy moth larvae live for about 2 to 3 months before entering the pupa stage, which lasts for approximately 2 weeks. Adults live for about 1 week before they lay new eggs.
Average lifespan
Status: wild: 12 months.
License | http://creativecommons.org/licenses/by-nc-sa/3.0/ |
Rights holder/Author | ©1995-2013, The Regents of the University of Michigan and its licensors |
Source | http://animaldiversity.ummz.umich.edu/accounts/Lymantria_dispar/ |
Canada
Origin: Exotic
Regularity: Regularly occurring
Currently: Present
Confidence: Confident
Type of Residency: Year-round
United States
Origin: Exotic
Regularity: Regularly occurring
Currently: Present
Confidence: Confident
Type of Residency: Year-round
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | NatureServe |
Source | http://explorer.natureserve.org/servlet/NatureServe?searchName=Lymantria+dispar |