You are here
Species
Ailanthus altissima (P. Mill.) Swingle
IUCN
NCBI
EOL Text
Tree-of-heaven is occurs in many states across the continental U.S. and Hawaii and to date has been reported to be invasive in natural areas in 30 states (see map).
The species is relatively resistant to insect predation (7). Three insect species are known to feed on ailanthus foliage, however (2). Most noted of the foliage feeders in the eastern range, especially in the South, is the ailanthus web-worm (Atteva punctella). Larvae from this insect feed on leaves enclosed in a frail, silken web. Another larval feeder, imported from Asia, is the cynthia moth (Samia cynthia). Ailanthus is the preferred host for this insect, but wild cherry and plum can also become infested. The Asiatic garden beetle (Maladera castanea) feeds on numerous plants during night flights, including ailanthus.
Although many fungi have been reported on the leaves and twigs of ailanthus, the tree suffers little from disease, and its pathology need rarely be a consideration in its culture (9). If ailanthus can be said to be subject to a major disease it would be Verticillium wilt (Verticillium albo-atrum). Many trees were killed by this soil-borne wilt in Philadelphia in 1936. Shoestring root rot (Armillaria mellea) has been reported in trees in New York (16).
While this tree is rated moderately susceptible to Phymatotrichum root rot (Phymatotrichum omnivorum) in Texas, it is considered most satisfactory for planting in the southern parts of Texas root rot belt (20,23).
In Texas, seeds are eaten by a number of birds, including the pine grosbeak and the crossbill (21). Occasional browsing by deer has also been reported.
Wind, snow, and hard freezes are damaging to tops of seedlings, while mature trees are resistant to ice breakage (3). Resprouting usually occurs, although repeated damage leads to a reduction in seedling survival.
More info for the term: breeding system
Tree-of-heaven reproduces by sprouting and from seed [71,135,312]. Both methods are important to tree-of-heaven's reproductive success and invasiveness [87,249].
In the two centuries since its introduction into North America, ailanthus has probably become differentiated into genetically different subpopulations based on seed traits. Seed characteristics of ailanthus have been identified as traits that differentiate varieties and geographical strains. Ailanthus with bright red samaras compared to the more common greenish yellow has been named Ailanthus altissima var. erythrocarpa (Carr.) Rehd. A study of 11 seed sources from California and Eastern States found that seed width and weight were correlated with latitude (6). Northern sources have wider, heavier seed than the more southern sources.
Comments: Called Ailanthus glandulosa in older literature.
License | http://creativecommons.org/licenses/by-nc/3.0/ |
Rights holder/Author | NatureServe |
Source | http://explorer.natureserve.org/servlet/NatureServe?searchName=Ailanthus+altissima |
Central China
Although ailanthus is sensitive to frost damage during its early years (Adamik and Brauns 1957), 6-year-old trees have survived winters of -33 centigrades accompanied by high winds (Zelenin 1976). Although Koffer (1895) suggested that ailanthus was unable to withstand the prolonged dry seasons of the Midwest, Dubroca and Bory (1981) commented on the "drought resistance" of the species. Dry soils are probably more suitable for its growth than wet soils (Adamik and Brauns 1957).
Ailanthus does well on very poor soils. Adamik and Brauns (1957) cultivated the species on rather thin topsoil and it "thrives even on stony ground." The tree has been used in revegetating acid mine spoils, tolerating a pH of less than 4.1, soluble salt concentrations up to 0.25 mmhos/cm and phosphorus levels as low as 1.8 ppm (Plass 1975). The tolerance of ailanthus to soil salinity is a disputed point in the literature. Opinions range from "salty soils not suitable for growth" (Adamik and Brauns 1957) to ailanthus "growing well on very saline shell sands (Lavrinenko and Volkov 1973). Intermediate views are expressed by Brogowski et al. (1977), Semoradova and Materna (1982) and Zelenin (1976).
Ailanthus has been planted widely in urban areas because of its ability to tolerate atmospheric pollution. Its ability to adapt to "the dirt and smoke, the dust and drought of cities" was recognized nearly 100 years ago (Sargent 1888). More recently ailanthus has been observed to survive cement dust near cement and lime works (Klincsek 1976); it is moderately resistant to fumes produced by the coke and coal-tar industry (Kozyukina and Obraztsova 1971); its leaves absorb significant amounts of sulfur in areas of high traffic flow (Kim 1975); it can accumulate high levels of mercury in its tissues (Smith 1972); and it is somewhat resistant to ozone exposure (Davis et al. 1978).
Although ailanthus may suffer from root competition by other trees already established in an area (Cozzo 1972), usually it competes successfully with other plants (Cozzo 1972, Hu 1979) and is considered a "dangerous weed" in forest plantations (Magic 1974). A high degree of shade tolerance gives ailanthus a competitive edge over other plant species (Grime 1965). The production of toxic chemicals by ailanthus may also explain the success of this plant. An aqueous extract of ailanthus leaves has been shown to be toxic to 35 species of gymnosperms and 10 species of angiosperms (Mergen 1959). This may be important in limiting natural succession in ailanthus stands. The toxicity levels are highest in the leaves during the early part of the growing season and are maintained at high levels at least until October (Voigt and Mergen 1962).
More info on this topic.
More info for the terms: geophyte, phanerophyte
Raunkiaer [254] life form:
Phanerophyte
Geophyte